Abstract

The structure of the synthetic dodecamer d(CGCAAATTGGCG) has been shown by single crystal X-ray diffraction methods to be that of a B-DNA helix containing two A(anti).G(syn) base pairs. The refinement, based on data to a resolution of 2.25 A shows that the mismatch base pairs are held together by two hydrogen bonds. The syn-conformation of the guanine base of the mismatch is stabilised by hydrogen bonding to a network of solvent molecules in both the major and minor grooves. A pH-dependent ultraviolet melting study indicates that the duplex is stabilised by protonation, suggesting that the bases of the A.G mispair are present in their most common tautomeric forms and that the N(1)-atom of adenine is protonated. The structure refinement shows that there is some disorder in the sugar-phosphate backbone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.