Abstract

The structural and thermodynamic properties of the non-oxide superconductor ZnNNi3 are investigated by using ab initio plane-wave pseudo potential density functional theory method within the generalized gradient approximation (GGA). The calculated lattice constants, the bulk modulus and its pressure derivative, and elastic constants of ZnNNi3 at zero temperature and pressure are in good agreement with the available theoretical and experimental data. The thermodynamic properties of ZnNNi3 are predicted by using the quasi-harmonic Debye model. The pressure-volume-temperature (P-V-T) relationship, the bulk modulus B0 and bulk modulus B, the variations of the thermal expansion

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call