Abstract

Understanding the interactions and thermodynamic parameters that govern the structure and stability of supramolecular polymers is challenging because of their flexible nature and high sensitivity to weak intermolecular interactions. The application of both experimental and computational analyses reveals the role that substituents on cyanuric acid (Cy), and other nitrogen-containing heterocycles, play in the formation of novel helical supramolecular structures. In this report, we focus on how noncovalent interactions, including steric and stacking interactions, modulate the structural and physical properties of these assemblies. In-depth analyses and several examples of critical steric and electrostatic effects provide insight into the relationship between intermolecular interactions of Cy with nucleic acids and the structure and thermodynamic stability of the supramolecular polymers they form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call