Abstract
The gaseous structures, thermochemical properties and dehydrogenation reaction energy profiles of the borane complexes of pyrrolidine and piperidine have been investigated using gas electron diffraction (GED) and state-of-the-art computational methods. These complexes are of interest because of their potential as hydrogen storage materials for future onboard transport applications. A comparative structural and thermochemical analysis revealed structures with a slight difference in the essential B–N bond length, with the piperidine borane having a longer bond even though it has a stronger B–N bond according to predicted bond dissociation energies, a trend common with amine boranes. To identify the most favourable dehydrogenation pathway, BH3-catalysed and BH3-uncatalysed dehydrogenation channels have been explored, where the former has been shown to be the favourable process for both complexes. The energy requirements for the hydrogen release reactions are expected to be minimal as evidenced from the calculated dehydrogenation reaction energies, implying their suitability for onboard chemical hydrogen storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.