Abstract

Ternary phosphate based glasses with the general formula (50−x/2)Na2O–xMgO–(50−x/2)P2O5 (0⩽x⩽42.8mol%), where the O/P ratio was varied from 3 to 3.75, have been prepared using a conventional melt quenching technique. Samples were investigated by means of density measurements, Fourier-transformed infrared (FTIR), Raman and 31P solid state magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopies, differential scanning calorimetry (DSC), inductively coupled plasma atomic emission spectroscopy (ICP/AES) analysis and calorimetric dissolution.The depolymerization of metaphosphate chains are described by the decrease of Q2 tetrahedral sites allowing the formation of pyrophosphate groups (Q1) revealed by spectroscopic investigations. As a result, the increase of density and glass transition temperature when x rises. Calorimetric study shows that the dissolution phenomenon is endothermic for a lower MgO content and becomes exothermic when magnesium oxide is gradually incorporated, suggesting the disruption of phosphate chains with increasing O/P ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call