Abstract
In this investigation an attempt has been made to characterize and identify Lysinibacillus sp. 3HHX by 16S-rDNA sequencing. The bacterium exhibited occurrence of PHAs granules on an average 11±1 per cell of 1.0μm length and breadth 0.72μm, revealed from TEM studies. Under optimized condition, 4.006gm/L of PHAs was extracted using hypochlorite digestion and multi-solvent extraction process. PhaC gene of ∼540bp and higher PHA synthase activity was detected at 48h of cultivation. The extracted PHAs was structurally characterized by GC–MS and 1H NMR reported to be P(3HB-co-3HDD-co-3HTD) and amorphous in nature with 112°C melting point, −11.0°C glass transition point and 114.76°C decomposition temperature detected by DSC & TGA respectively. The C/O of biopolymer disc was 1:65 as revealed from C1s and O1s spectra of XPS, that was completely biodegradable within 30 days. This biopolymer was observed to be non-cytotoxic to NIH 3T3 mouse fibroblast cells. The report is of its kind in establishing the abilities of Lysinibacillus sp. 3HHX for non-growth associated PHA co-polymer production. Moreover the biocompatible and biodegradable nature of the biopolymer conferred to its substantial biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.