Abstract

Physical and thermal properties of glyceryl behenate (Compritol ® 888 ATO) used as sustained-release matrix in pharmaceutical applications are studied by coupled time-resolved synchrotron X-ray diffraction and Differential Scanning Calorimetry combined with Infrared Spectroscopy. With these techniques, all polymorphs formed in glyceryl behenate, analyzed as received and after various thermal treatments from quenching to slow crystallization, are characterized. By using different well-controlled mixtures of mono-, di- and tribehenate, we identify each lamellar phase observed in the glyceryl behenate. Finally the influence of the crystallization rate on the formation of preferential conformations was also analyzed in order to bring insights into the polymorphism of glyceryl behenate. By changing the crystallization rate of the sample, it was shown that one can favor the formation of preferential polymorphs in the sample. In particular the crystallization at 10 °C/min seems to be well adapted for producing a single lamellar phase with a period of 60.9 Å while a crystallization rate of 0.4 °C/min produces three different lamellar phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.