Abstract
The extraction of consistent skeletons in the presence of boundary noise is still a problem for most skeletonization algorithms. Many suppress skeletons associated with boundary perturbation, either by preventing their formation or removing them subsequently using additional operations. A more appropriate approach is to view a shape as comprising of structural and textural skeletons. The former describes the general structure of the shape and the latter its boundary characteristics. These two types of skeletons should be encouraged to remaining disconnected to facilitate gross shape matching without the need for branch pruning. Such skeletons can be formed by means of a multi-resolution gradient vector field (MGVF), which can be generated efficiently using a pyramidal framework. The robust scale-invariant extraction of the skeletons from the MGVF is described. Experimental results show that the MGVF structural skeletons are less affected by boundary noise compared to skeletons extract by other popular iterative and non-iterative techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.