Abstract
Tackling antimicrobial resistance is of increasing concern in a post-pandemic world where overuse of antibiotics has increased the threat of another pandemic caused by antimicrobial-resistant pathogens. Derivatives of coumarins, a naturally occurring bioactive compound, and its metal complexes have proven therapeutic potential as antimicrobial agents and in this study a series of copper(II) and zinc(II) complexes of coumarin oxyacetate ligands were synthesised and characterised by spectroscopic techniques (IR, 1H, 13C NMR, UV-Vis) and by X-ray crystallography for two of the zinc complexes. The experimental spectroscopic data were then interpreted on the basis of molecular structure modelling and subsequent spectra simulation using the density functional theory method to identify the coordination mode in solution for the metal ions in the complexes. Interestingly, the solid-state coordination environment of the zinc complexes is in good agreement with the simulated solution state, which has not been the case in our previous studies of these ligands when coordinated to silver(I). Previous studies had indicated excellent antimicrobial activity for Ag(I) analogues of these ligands and related copper and zinc complexes of coumarin-derived ligands, but in this study none of the complexes displayed antimicrobial activity against the clinically relevant methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Candida albicans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.