Abstract

Adsorption of anthracene on silver is investigated based on the density functional theory and the surface-enhanced Raman spectroscopy (SERS). Variations in bond and dihedral angles of the optimised geometry of anthracene indicate distortions in the hexagonal structure of the ring nearer to the silver cluster and deviations in the co-planarity of carbon atoms. Natural bond orbital analysis confirms intramolecular charge transfers from π(C–C) to π*(C–C) and π(C–C) to σ*(Ag–Ag) orbitals. Higher polarisation resulting from charge transfers on adsorption accounts for Raman enhancements of selective vibrational modes and band shifts. Surface plasmon resonance peak of silver nanoparticles after the adsorption of anthracene observed around 399 nm compares well with the theoretically simulated UV–vis spectrum derived using the time-dependent density functional theory. Theoretical and experimental SERS correlate well, confirming the process of adsorption, the tilted orientation of anthracene on the silver surface and the adsorption mechanism reported. Localisation of the electron density together with a reduced band gap after the adsorption on silver suggests its utility in the design of electro-active organic molecular devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call