Abstract

Highly fluorescent LaPO4:Ce/Tb@LaPO4@SiO2 (core/shell/Si) nanorods(NRs) were fabricated with an average length 100nm by co-precipitation process at low temperature. X-ray diffraction (XRD), Transmission electron microscopy (TEM), energy dispersive X-ray analysis, Fourier transform infrared, optical absorption and photoluminescence spectral techniques were applied to investigate the crystal structure, phase purity, morphology, surface chemistry and optical properties of the as-prepared samples. XRD results confirmed the formation of highly crystalline with single phase, monoclinic type structure. TEM image illustrates the poly-dispersed, narrow size distributed, irregular size rod-shaped nanostructures, with mean diameters of 20nm and average lengths up to 140nm. FTIR spectral analysis confirmed the silica surface modification. The comparative emission spectral study shows highest luminescence intensity of core/shell NRs, due to a reduction in nonradiative transition rate. The emission intensity enhancement proves that growing of an inert LaPO4 layer on the surface of luminescent core-NRs was an effective way to suppress surface related quenching mechanism. These well crystalline, highly aqueous soluble along with extraordinary colloidal stability core/shell/Si NRs were extremely suitable material in fluorescent bio-labeling applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.