Abstract

While extensively investigated in thin film form for energy materials applications, this work investigates the formation of APbBr3 structures (A = CH3NH3+ (MA), Cs+) in silicon and oxidized silicon nanotubes (SiNTs) with varying inner diameter. We carefully control the extent of oxidation of the nanotube host and correlate the relative Si/Si oxide content in a given nanotube host with the photoluminescence quantum efficiency (PLQE) of the perovskite. Complementing these measurements is an evaluation of average PL lifetimes of a given APbBr3 nanostructure, as evaluated by time-resolved confocal photoluminescence measurements. Increasing Si (decreasing oxide) content in the nanotube host results in a sensitive reduction of MAPbBr3 PLQE, with a concomitant decrease in average lifetime (τave). We interpret these observations in terms of decreased defect passivation by a lower concentration of oxide species surrounding the perovskite. In addition, we show that the use of selected nanotube templates leads to more stable perovskite PL in air over time (weeks). Taken in concert, such fundamental observations have implications for interfacial carrier interactions in tandem Si/perovskite photovoltaics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.