Abstract

Glassy carbon is a form of carbon made by heating a phenolic resin to high temperature in an inert atmosphere. It has been suggested that it is composed of fullerene-like structures. The aim of the present work was to characterize the material using both structural (neutron diffraction and transmission electron microscopy) and spectroscopic (inelastic neutron scattering, Raman and X-ray photoelectron spectroscopies) methods. We find no evidence to support the suggestion of fullerene-like material being present to a significant extent, rather the model that emerges from all of the techniques is that the material is very like amorphous carbon, consisting of regions of small graphite-like basic structural units of partly stacked but mismatched structure with the edges terminated by hydrogen or hydroxyls. We do find evidence for the presence of a small quantity of water trapped in the network and suggest that this may account for batch-to-batch variation in properties that may occur.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call