Abstract
The aqueous reaction of mellitic acid (H6mell) with 242PuBr3·nH2O forms two plutonium mellitates, 242Pu2(mell)(H2O)9·H2O (Pu-1α) and 242Pu2(mell)(H2O)8·2H2O (Pu-1β). These compounds are compared to the isomorphous lanthanide mellitates with similar ionic radii via bond length analysis. Both plutonium compounds form three-dimensional metal-organic frameworks, with Pu-1α having two unique metal centers and Pu-1β having one. All plutonium metal centers exhibit nine-coordinate geometries. Our results show metal-oxygen bond lengths for plutonium significantly shorter than those of the previously reported lanthanum and herein reported cerium analogues, consistent with the nine-coordinate ionic radii. Clear Laporte-forbidden 5f → 5f transitions are observed in the ultraviolet-visible-near-infrared spectra and are assigned to trivalent plutonium. However, there is a distinct color difference between the two plutonium compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.