Abstract
In this paper, we report X-ray diffraction investigations as well as Raman and solid-state 31P and 23Na magic angle spinning nuclear magnetic resonance (NMR) characterization of three series of calcium orthophosphates. The general formulae of the studied compounds are Ca10.5−x/2Mx(PO4)7, where M=K or Na and x=0, 0.25, 0.50, 0.75, 1.0; and Ca10KxNa1−x(PO4)7, where x=0, 0.25, 0.5, 0.75, 1.0. These calcium orthophosphates are found to be isostructural with β-tricalcium phosphate (β-TCP, Ca3(PO4)2) with the substitution of some calcium sites by potassium and/or sodium cations. The unit cell parameters vary continuously with the level of substitution, a characteristic of these solid solutions. The Raman spectra show the different vibrational bands of the phosphate groups PO4, while the NMR chemical shifts are sensitive to the non-equivalent phosphorus and sodium ions present in these substituted samples. As both Raman and NMR spectroscopies are local probes, they offer tools to distinguish between these different phosphorus and phosphate groups, according to their structural site and local environment, especially the type of cation substituent. A convenient decomposition of the Raman and NMR spectra into Gaussian–Lorentzian components leads us to propose an assignment of the main observed bands of these substituted β-TCPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.