Abstract

The chemisorption and subsequent reaction of bromine on Cr(110 has been studied by Auger spectroscopy, LEED, Δφ, and thermal desorption measurements. For gas doses of < 7.5 × 10 18 molecules m −2, very efficient dissociative chemisorption leads to a series of well-ordered, out-of-registry compression structures. Uniquely, however, the overlayer falls back into registry at saturation coverage; at this point the appearance of glide symmetry indicates that the three-fold coordinated adsorption sites are occupied exclusively. Bromine → metal charge transfer occurs during adsorption (in contrast to Cr(100)). On raising the temperature at low coverages, the surface phase decomposes by evaporation as CrBr molecules; at higher coverages the desorption product switches to CrBr 2. Continuous growth of bulk CrBr 2 sets in at high gas exposures, this corrosion reaction proceeding at a rate which is ten times slower than the rate of overlayer formation. The chromium dibromide layer also evaporates as CrBr 2(g). Structural relationships with related metal-halogen systems are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.