Abstract

Mg(BH4)2·2NH3 is a relatively new compound considered for hydrogen storage. The fundamental properties of the compound were comprehensively studied using first-principles calculations, such as crystal structure and electronic structure, reaction Gibbs free energy and possible reaction pathway. The calculated crystal structure is in good agreement with the experimental and other theoretical results. Results from electronic density of states (DOS) and electron localization function (ELF) show the covalent characteristics of the N–H and the B–H bonds, and the weak ionic interactions between the Mg atom and the NH3 ligands or the (BH4)− ligands. The reaction Gibbs free energies of several possible decomposition reactions were calculated between 0 and 700 K. All the reactions are exothermic. The most likely reaction pathway of the dehydrogenation reaction was clarified to show five distinct steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call