Abstract

To apply starch nanoparticles (SNP) as host materials for β-carotene encapsulation, aqueous SNP dispersions (10, 25, 50, and 100 mg/10 mL) and β-carotene in acetone (10, 50, 100, 150, and 200 μg/mL) were mixed. The acetone in the mixture was evaporated to prepare SNP and β-carotene composites, which were homogeneously dispersed in aqueous media with over 90 % solubility. When SNP content was higher than 50 mg, over 80 % of β-carotene was encapsulated in the composite matrix. X-ray diffraction, nuclear magnetic resonance spectroscopy, and transmission electron microscopic analyses confirmed the micellar-shaped composite particles with diameters <120 nm and an amorphous structure. High SNP content in the composites enhanced β-carotene stability under extremely hot and acidic conditions as well as against ultraviolet rays and oxidation reactions. The encapsulated β-carotene was not readily released in simulated gastric fluid, but was gradually released in simulated intestinal fluid via SNP digestion in the composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.