Abstract
A set of cerium dioxide nanoparticles (CeO2 NPs) was synthesized by precipitation in water-alcohol solutions under conditions when the physical-chemical parameters of synthesized NPs were controlled by changing the ratio of the reaction components. The size of CeO2 NPs is controlled largely by the dielectric constant of the reaction solution. An increase of the percentage of Ce3+ ions at the surface was observed with a concomitant reduction of the NP sizes. All synthesized CeO2 NPs possess relatively high positive values of zeta-potential (ζ > 40 mV) suggesting good stability in aqueous suspensions. Analysis of the valence- and size-dependent rate of hydrogen peroxide decomposition revealed that catalase/peroxidase-like activity of CeO2 NPs is higher at a low percentage of Ce3+ at the NP surface. In contrast, smaller CeO2 NPs with a higher percentage of Ce3+ at the NP surface display a higher oxidase-like activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.