Abstract
We study the induced defects in the depth profiling of the silicon structure after being implanted with carbon and followed by high energy proton irradiation. It has been reported before that the formation of the optically active point-defect, specifically the G-centre is due to the implantation and irradiation of carbon and proton, respectively. It is crucial to quantify the diffusional broadening of the implanted ion profile especially for proton irradiation process so that the radiation damage evolution can be maximized at the point-defect formation region. Profiling analysis was carried out using computational Stopping and Range of Ions in Matter (SRIM) and Surrey University Sputter Profile Resolution from Energy Deposition (SUSPRE) simulation. The energies of carbon ions adopted for this investigation are 10, 20, 30, and 50 keV, while proton irradiation energy was kept at 2 MeV. Photoluminescence measurements on silicon implanted with carbon at different energies were carried out to study the interrelation between the numbers of vacancies produced during the damage event and the peak emission intensities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.