Abstract

The oxo-transfer catalyst (nitro)(pyridyl)cobalt(III) tetraphenylporphyrin has been reinvestigated by substitution of the distal pyridine ligand with 4-N,N-dimethylaminopyridine and 3,5-dichloropyridine. Differences in their structures and in the reactivity of the compounds toward catalytic secondary oxo transfer were investigated by FT-IR and UV-visible spectroscopy, cyclic voltammetry, X-ray diffraction, semiempirical calculations, and reactions with alkenes in dichloromethane solution. Very modest differences in the hexacoordinate compounds' structures were predicted and observed, but the secondary oxo-transfer reactivity at the nitro ligand varies markedly with the basicity of the pyridine ligand and the position of the coordination equilibrium. Oxo transfer occurs rapidly through the pentacoordinate species (nitro)cobalt(III) tetraphenylporphyrin that is generated by dissociation of the pyridine ligand and therefore is strongly related to the Hammett parameters of these nitrogenous bases. The reactive pentacoordinate species CoTPP(NO(2)) can be generated in solution by addition of lithium perchlorate to (py)CoTPP(NO(2)) by Lewis acid-base interactions or more simply by using the weaker Lewis base Cl(2)py instead of py as the distal ligand. In contrast to pentacoordinate (nitro)iron porphyrins, disproportionation reactions of CoTPP(NO(2)) compound are not evident. This pentacoordinate derivative, CoTPP(NO(2)), is reactive enough to stoichiometrically oxidize allyl bromide in minutes. Preliminary catalytic oxidation reaction studies of alkenes also indicate the involvement of both radical and nonradical oxo-transfer steps in the mechanism, suggesting formation of a peroxynitro intermediate in the reaction of the reduced CoTPP(NO) with O(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call