Abstract

This paper briefly reports the structural and optoelectronics properties of prepared pure and Sb doped ZnO nanoparticles. Doping with suitable elements offers an efficient method to control and enhance the optical properties of ZnO nanoparticles, which is essential for various optoelectronics applications. Sb doped ZnO nanoparticles have significant concern due to their unique and unusual electrical and optical properties. In the present work, we report the synthesis of Sb doped ZnO successfully with average particle size range from 26 to 29 nm via direct precipitation method. The phase purity and crystallite size of synthesized ZnO and Sb doped nano-sized particles were characterized and examined via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The elemental analyses of undoped and doped ZnO nanoparticles were examined by using energy-dispersive X-ray spectroscopy (EDAX).We investigated and measured the optoelectronics properties of synthesized ZnO and Sb doped ZnO nanoparticles by employing photoluminescence and UV–Visible spectroscopy. The influence of Sb doping on photoluminescence (PL) spectra of ZnO nanoparticles, which consists of UV emission and broad visible emission band, is found to be strongly dependent upon the Sb concentration for all the Sb doped ZnO nanoparticles samples under investigation. The UV–Visible absorption study shows an increase in band gap energy as Sb is incorporated on the ZnO nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call