Abstract

High quality ZnO film was deposited by plasma-assisted metal-organic chemical vapor deposition (MOCVD). We observed a dominant peak at 34.6° due to (0 0 2) ZnO, which indicated that the growth of ZnO film was strongly C-oriented. The full-width at half-maximum (FWHM) of the ω-rocking curve was 0.56° indicating relatively small mosaicity. Photoluminescence (PL) measurement was performed at both room temperature and low temperature. Ultraviolet (UV) emission at 3.30 eV was found with high intensity at room temperature while the deep level transition was weakly observed at 2.513 eV. The ratio of the intensity of UV emission to that of deep level emission was as high as 193, which implied high quality of ZnO film. From PL spectrum at 10 K, we observed A-exciton emission at 3.377 eV and D°X bound exciton transition at 3.370 eV. The donor–acceptor transition and LO phonon replicas were observed at 3.333 and 3.241 eV respectively. Raman scattering was performed in back scattering at room temperature. The E2, A1(LO) and A1(TO) mode was seen at 437.6, 575.8 and 380 cm−1 respectively. In comparison with Raman spectrum of ZnO powder, we found that ZnO film was nearly free of strain, which indicated high crystal quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.