Abstract

Quantum dot (QD) composite nanoparticles of titania germanium (TiO2–Ge) were fabricated by pulsed laser ablation of composite targets of TiO2–Ge immersed in deionized water. The single phase crystallanity, lattice parameters, and the evaluation of crystallite size of nanoparticles was investigated by X-ray diffraction (XRD). The morphology of the samples was analyzed through scanning electron microscopic studies. The average particle size calculated through XRD and measured through scanning electron microscope is in the range from 18 to 29 nm and are in agreement with each other. Compositional study was carried out through electron dispersive X-ray analysis showing that the ablation rate of Ge is smaller than TiO2. Optical properties were measured by UV–visible transmission spectra and Raman spectroscopy. The band gap of composite particles varies from the UV to the visible range by varying concentration of Ge QDs. This work shows that pulsed laser ablation in liquid media is an easy approach to synthesize ultrafine, contamination-free nanosized material, which is difficult to produce by other conventional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.