Abstract

Crystalline β-Ga2O3 thin films on (100)- and (111)-oriented Si substrates are produced by pulsed laser deposition. The as-deposited thin films are demonstrated to be polycrystalline and contain a slight deficit of oxygen atoms as measured by x-ray diffraction spectroscopy and Rutherford backscattering spectrometry, respectively. The crystallographic orientation of the Si substrate is found to play no role on the ultimate properties of the films. A direct optical band gap of 4.8 eV is determined by temperature-dependent photoluminescence excitation (PLE). Temperature-dependent PLE spectra reveal the existence of a deep acceptor level of around 1.1 eV with respect to the valence band related to self-trapped holes. We experimentally demonstrate that point defects in O-poor β-Ga2O3 thin films act as deep donors and the optical transitions are found to take place via recombination of electrons from one of the intrinsic deep donor levels with self-trapped holes located at 1.1 eV above the valence band. The 3.17 eV ultraviolet photoluminescence is proven to be related to self-trapped holes in a small polaron state between two O(II)-s sites, whereas the two blue (2.98, 2.72 eV) and the green (2.39 eV) luminescence bands are mainly originated from gallium-oxygen vacancy pairs in the (1-) charge state, gallium vacancies in the (2-) charge state and neutral oxygen interstitials, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call