Abstract

The electronic energy band structure, site- and angular-momentum-decomposed densities of states (DOS) and charge-density contours of perovskite SrTiO3 in the paraelectric cubic phase are calculated by the first-principles tight-binding linear muffin-tin orbitals method with atomic sphere approximation using density functional theory in its local density approximation. The calculated band structure shows a direct band gap of ~1.4 eV at the gamma point in the Brillouin zone. The total DOS is compared with experimental x-ray photoemission spectra. From the DOS analysis, as well as charge-density studies, we conclude that the bonding between Sr and TiO3 is mainly ionic and that the TiO3 entities bond covalently. Using the projected DOS and band structure we have analysed the interband contribution to the optical properties of SrTiO3. The real and imaginary parts of the dielectric function and hence the optical constants (such as the reflectivity, refractive index, extinction coefficient and absorption coefficient) and the electron energy-loss spectrum are calculated. The calculated spectra are compared with the experimental results for SrTiO3 in the cubic phase and are found to be in good agreement with the experimental results in low-energy regions. The role of band-structure calculation as regards the optical properties of SrTiO3 is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.