Abstract

Indium tin oxide (ITO) and titanium dioxide (TiO2) anti-reflective coatings (ARCs) were deposited on a (100) P-type monocrystalline Si substrate by a radio-frequency (RF) magnetron sputtering. Polycrystalline ITO and anatase TiO2 films were obtained at room temperature (RT). The thickness of ITO (60 to 64 nm) and TiO2 (55 to 60 nm) films was optimized, considering the optical response in the 400- to 1,000-nm wavelength range. The deposited films were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM). The XRD analysis showed preferential orientation along (211) and (222) for ITO and (200) and (211) for TiO2 films. The XRD analysis showed that crystalline ITO/TiO2 films could be formed at RT. The crystallite strain measurements showed compressive strain for ITO and TiO2 films. The measured average optical reflectance was about 12% and 10% for the ITO and TiO2 ARCs, respectively.

Highlights

  • To deposit titanium dioxide (TiO2) and indium tin oxide (ITO) films, several techniques have been used, including radio-frequency (RF) sputtering, chemical vapor deposition [1], sol–gel [2], spray deposition [3], and electronbeam evaporation [4]

  • The reflection from the (2 2 2) crystalline plane resulted in a characteristic peak at 2θ = 30.81°, which was close to the peak (2θ = 30.581°) of the reference ITO [11,16,17]

  • Anatase phase of TiO2 film grown on Si p-type (100) at room temperature (RT) is highly photoactive and have better AR properties as compared to other TiO2 polymorphs: rutile and brookite [19]

Read more

Summary

Introduction

To deposit titanium dioxide (TiO2) and indium tin oxide (ITO) films, several techniques have been used, including radio-frequency (RF) sputtering, chemical vapor deposition [1], sol–gel [2], spray deposition [3], and electronbeam evaporation [4]. RF sputtering is a sophisticated process with high deposition rate and good reproducibility [6]. Most of these techniques require a type of heat treatment (250°C to 650°C) for the substrates during or after the deposition [1,2,4], due to insufficient crystallization at RT. This phenomenon leads to poor optical and structural properties [7]. The ITO film exhibits excellent conductivity and it can be used as an ohmic contact on a p-type c-Si

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.