Abstract

AbstractWurtzite InGaN/GaN and AlGaN/GaN heterostructures grown on sapphire by metal organic vapor phase epitaxy were studied using scanning transmission electron microscopy (STEM), cathodoluminescence (CL) combined with secondary electron (SE) imaging, high resolution x-ray diffractometry (HRXRD), and atomic force microscopy (AFM).SE imaging and AFM were used to study the surface morphology. The results indicate the presence of the following structural defects on the surface of InGaN/GaN heterostructures: hexagonal mesa-like structures, hexagonal pyramids and micropipes, while the surface of the AlGaN/GaN heterostructures are mirror-like smooth. The local optical properties of defects and defect free regions were studied using spatially resolved CL at low temperature. In addition, the dependence of the optical properties of both sorts of heterostructures on the quantum well width or chemical composition of ternary materials was investigated. The structural properties of the heterostructures were studied by STEM and HRXRD. Convergent beam electron diffraction (CBED) and corresponding simulations, convergent beam imaging (CBIM), and high resolution x-ray diffraction (HRXRD) were used to study the strained layers. Dislocations and interface properties were characterized using bright-field imaging, while the chemical compositions fluctuations were analyzed by Z-contrast imaging and energy dispersive x-ray microanalysis (EDX).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.