Abstract

Laser-diode heterostructures of InGaAlN containing a third-order diffraction grating for distributed optical feedback have been examined with transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The grating was defined holographically and etched by chemically assisted ion-beam etching into the upper GaN confinement layer of the laser structure. After the etch step, it was overgrown with an Al0.08Ga0.92N upper cladding layer. Threading dislocations were present that initiated at the sapphire substrate, but no new dislocations were observed at the grating/Al0.08Ga0.92N interface. A comparison of TEM and SEM micrographs reveals that there is a compositional gradient in the AlGaN upper cladding layer; however, calculations show that it did not reduce the optical coupling coefficient of the grating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.