Abstract

The paper investigates, both theoretically and experimentally, the structural and optical changes in SnO2 system brought about by introduction of Cu in a SnO2 system. On the experimental front, a cost effective sol-gel technique is used to prepare hexagonal shaped Cu doped SnO2 nanoparticles. The prepared pristine SnO2 nanoparticle is found to be of random shape by transmission electron microscope (TEM) studies. A structural and morphological study is carried out using X-ray diffraction and TEM techniques. The different phonon interaction in the system is observed by Raman spectroscopy while electron paramagnetic resonance and UV-Visible spectroscopy confirms the presence of Cu in 2+ state. First principle calculations have been performed using “density functional theory”-based MedeA Vienna Ab Initio Simulation package on a SnO2 system where Cu is introduced. The introduction of Cu in the SnO2 system brings distortion which is corroborated by the variation in the corresponding bond lengths. The Density of State calculation of Sn16O32 and CuSn15O32 is also performed. Finally, a correlation is established between the experiment and the theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call