Abstract

A chalcogenide SnS2 – xSex alloy with x = 1, synthesized by high-energy mechanical alloying, was characterized by high-resolution transmission electron microscopy, X-ray diffraction, differential scanning calorimetry, Raman spectroscopy, and UV-Vis absorbance. The obtained alloy powder was a lamellar solid solution with nanometric crystalline domain sizes and several types of defects such as stacked faults, discordances, crystal fractures, and local atomic disorders. All of these microstructural features lead to the manifestation of different optical and vibrational properties of this extensively deformed nanostructured sample. Raman spectroscopic measurements suggested a two-mode vibration indicating how the S and Se atoms were distributed in the crystalline lattice. The UV-Vis absorbance spectrum showed multiple bandgaps at 1.99, 2.60, 3.09, 3.66, and 4.56 eV that may well be described as direct allowed interband electronic transitions suggesting inhomogeneous strain and domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.