Abstract

In this study, a simple and efficient non-covalent functionalization method was developed to introduce conducting polymer of P3HT onto pristine MWCNT and hydroxyl MWCNT surfaces without causing significant changes in electrical characteristics, especially if used as a sensing material. Electron microscopy (FE-SEM) and (HR-TEM) were used to examine the surface morphology of nanocomposites, which demonstrated that the MWCNTs were well wrapped by P3HT. EDX analysis showed interactions between MWCNT-OH and P3HT, with a higher sulfur content of 7.77 wt% from P3HT. Additionally, the diameters of both pristine MWCNT (24.46 nm) and MWCNT-OH (27.56 nm) increased significantly when they form nanocomposites (35.35 nm and 39.40 nm respectively). Further characterization of the produced P3HT-MWCNT nanocomposite was performed using FT-IR and Raman spectroscopy. It was discovered that MWCNTs were dispersed uniformly, with a substantial interaction between P3HT and MWCNTs. The introduction of malathion on the surface of the nanocomposites reveals interaction between P3HT and malathion via intermolecular hydrogen bonding of thiophene, as evidenced by inelastic neutron scattering (INS) spectroscopy, suggesting that the P3HT/MWCNT has the potential as a promising sensing material for organophosphate compounds detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.