Abstract

A multi-approach was used to study different aspects of self-incompatibility (SI) in almond (Prunus dulcis). First, a population of almond cultivars was characterised as to their individual S-allele combination using separation of stylar protein extracts (non-equilibrium pH gradient electrofocusing) followed by staining for RNase activity, which led to the identification of one putative new allele and several new S-allele combinations. Second, a field pollination scheme was designed to study pollen tube progression and to obtain a spatial and temporal characterisation of this reproductive stage in both incompatible and compatible crosses. In addition, an anti-serum was raised against a synthetic peptide designed from an almond S-protein (S8) and used for immunological in situ detection in pistil cryosections. S-RNases were found to accumulate intercellularly in the stylar transmitting tissue as previously reported for other rosaceous species. The results are discussed in view of the evolution of the gametophytic SI system and the models proposed for its mechanism. Gametophyte selection is also proposed as an important intraspecific barrier to fertilisation in this species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.