Abstract

A nanostructured Fe{sub 50}Al{sub 40}Ni{sub 10} mixture was prepared by mechanical alloying of elemental Fe, Al and Ni powders in a planetary ball mill. Structural and microstructural changes during the milling process were followed by X-ray diffraction technique. The patterns so obtained were analyzed using the Maud program. An ordered B2 FeAl phase is formed after 1 h of milling. The observed lattice expansion is related to the production of antisite defects; Fe{sub Al} and Al{sub Fe}. During the intermediate stages of milling, the mechanical alloying process gives rise to a mixture of two BCC {alpha}{sub i}-Fe(Al,Ni) (i = 1,2) structures with the same crystallite size but different lattice parameters, microstrains and proportions. The BCC {alpha}{sub 2}-Fe(Al,Ni) disappeared after 4 h, only the B2 FeAl and BCC {alpha}{sub 1}-Fe(Al,Ni) solid solution persist over prolonged milling times. - Research highlights: {yields} Fe{sub 50}Al{sub 40}Ni{sub 10} was prepared by MA from Fe, Al and Ni powders in a planetary ball mill. {yields} B2 FeAl is formed after 1 h of MA. Lattice expansion is related to Fe{sub Al} and Al{sub Fe} defects. {yields} MA gives rise to 2 BCC structures with the same L but different a, {sup 1/2} and %.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call