Abstract

This work evaluated on the structural modification during high-energy ball milling of the Si-50C, Si-42.9C-19.1B e Si-33.3C-44.4B (at.-%) powder mixtures from elemental powders. Electron images revealed on occurrence of continuous fracture mechanisms in brittle particles during their processing, which presented rounded particles lower than 10 μm. X-ray diffraction results of Si-50C powders indicated that the intensity of Si peaks was slightly reduced after milling for 17 h, which were moved to the direction of larger diffraction angles after 7 h of milling, suggesting that carbon atoms were dissolved into the Si lattice in order to form an extended solid solution. Following, these values were increased due to the discrete exothermic formation of the SiC compound. In Si-C-B powder mixtures, the SiC and B4C compounds were formed after milling for 7 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.