Abstract
Intramembrane proteases cleave membrane proteins in their transmembrane helices to regulate a wide range of biological processes. They catalyse hydrolytic reactions within the hydrophobic environment of lipid membranes where water is normally excluded. How? Do the different classes of intramembrane proteases share any mechanistic principles? In this review these questions will be discussed in view of the crystal structures of prokaryotic members of the three known catalytic types of intramembrane proteases published over the past 7 years. Rhomboids, the intramembrane serine proteases that are the best understood family, will be the initial area of focus, and the principles that have arisen from a number of structural and biochemical studies will be considered. The site-2 metalloprotease and GXGD-type aspartyl protease structures will then be discussed, with parallels drawn and differences highlighted between these enzymes and the rhomboids. Despite the significant advances achieved so far, to obtain a detailed understanding of the mechanism of any intramembrane protease, high-resolution structural information on the substrate-enzyme complex is required. This remains a major challenge for the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.