Abstract

Rare earth element doping of chromium is much desired for various applications, but is technically difficult because of dopant segregation. Using a room temperature mechanical alloying method, dilute yttrium doping into nanosized chromium was achieved. Synchrotron-based high-pressure X-ray diffraction indicated that the Cr-Y alloy (Cr0.97Y0.03) was stable at up to 39 GPa, and the bulk modulus was 203 ± 2.6 GPa. The experimental results were consistent with first-principles density functional theory simulation. The diffraction line broadening profiles indicated the deformation anisotropy of the nanoalloy. This study suggests that Cr0.97Y0.03 alloy is promising for ultrahigh stress applications such as airplane engines and land-based turbines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.