Abstract

There is global interest in improving the mechanical properties of light metals such as aluminum (Al)-based alloys by tailoring their microstructures at the nanometer scale. On the other hand, gold (Au) has been widely applied as a wire bonding material due to its prominent ductility and conductivity. In this study, the microstructure, hardness and elastic modulus of DC magnetron-sputtered aluminum/gold (Al/Au) composite thin films of different thicknesses were investigated. It is shown that in addition to the formation of AlAu2 phase, additional Al and Au nanosegregated phases also formed. The Al/Au thin films of 600 and 800 nm thickness exhibit the maximum hardness (~5.40 GPa) and elastic modulus (~97.00 GPa). However, film thicknesses of 1000 and 1200 nm demonstrate a reduction in hardness and elastic modulus due to different growth mechanisms and the formation of voids that can be attributed to the Kirkendall phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call