Abstract

Freezing has been widely used for long-term food preservation. However, freezing-thawing (FT) treatment usually influences the texture and structure of food gels such as konjac. For their texture control after FT treatment, it is important to clarify the structural change of food gels during the FT process. In this study, we investigated the aggregated structures of konjac glucomannan (GM) gels during the FT process using simultaneous synchrotron small-angle X-ray/wide-angle X-ray scattering (SAXS/WAXS) techniques. The FT treatment resulted in more crystallization of GM, and consequently, a large increase in compressive stress. In-situ SAXS/WAXS measurements revealed the following findings: on freezing, water molecules came out of the aggregated phase of GM and after the thawing, they came back into the aggregated phase, but the aggregated structure did not return to the one before the freezing; the gel network enhanced the inhomogeneity due to the growth of ice crystals during freezing. Furthermore, we examined the influence of additives such as polyvinyl (alcohol) (PVA) and antifreeze glycoprotein (AFGP) on the mechanical and structural properties of freeze-thawed GM gels. Although the addition of PVA and AFGP suppressed the crystallization of GM, it could not prevent the growth of ice crystals and the increase in the inhomogeneity of the gel network. As a result, the compressive stresses for freeze-thawed GM gels containing PVA or AFGP were significantly higher compared with those of GM gels without FT treatments, although they were lower than those of freeze-thawed GM gels. The findings of this study may be useful for not only the texture control of freeze-thawed foods but also the improvement of the mechanical performance of the biomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.