Abstract

The (1 0 3)-oriented aluminum nitride (AlN) thin film is an attractive piezoelectric material for the applications in surface acoustic wave and film bulk acoustic wave resonator devices. In this work, we repot structural and mechanical characteristics of (1 0 3) AlN thin films deposited onto (1 0 0) Si substrates with radio frequency magnetron sputtering at different sputtering powers at 150, 250, and 350 W. Comparisons were made on their crystalline structures with X-ray diffraction, surface morphologies with atomic force microscopy, mechanical properties with nanoindentation, and tribological responses with nanoscratch. Results indicate that for the sputtering power of 350 W, a high-quality (1 0 3) AlN thin film, whose hardness is 18.91 ± 1.03 GPa and Young's modulus is 242.26 ± 8.92 GPa, was obtained with the most compact surface condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call