Abstract

The results of an instrumental and analytical investigation of the products of mineral and textural transformations in the tectonic slickensides and fault gouge in the near-surface terrigenous sedimentary rocks (clays, arkose sandstones, shungites) which have undergone localized deformations in fault zones of presumably seismogenic origin are presented. Based on this, several peculiarities in the behavior of a dynamic slip in the upper transition horizon from aseismic to seismogenic mode of faulting in the Earth’s crust are elucidated. The changes in the mineral phase compositions of the fault facies against the protolith composition are estimated; the parameters of the temperature regime and thermal energy balance of deformational metamorphic reactions are determined. The probable causes of instability in the faults, the mechanisms of the loss of strength, the weakening and strengthening during seismogenic dynamic slip are considered. The role of tribochemical phenomena in the course of a rock’s transformation into a fault gouge and the related energy effects are discussed. An inventory of the possible energy costs on the processes of transforming material in dynamic slip zones is compiled.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call