Abstract

In present work, a series of Ba2Co2−xMnxFe12O22 nanoparticles (x = 0.0, 0.1, 0.3, 0.5, 0.7, and 0.9) has been synthesized by hydrothermal method. Effect of Mn substitution on structural, microstructure and magnetic properties has been investigated in detail. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) analyses confirmed the formation of Y-type hexagonal ferrite structure. Morphology and chemical composition studies performed by Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy conformed that with increasing Mn concentration grain size increases from few nanometers to micrometer range. Furthermore, magnetic analyses revealed that with increasing Mn concentration at octahedral and tetrahedral sites the coercivity and squareness were found to increase from 455Oe to 2550Oe, and 0.26 to 0.56, respectively. Theoretical approach was also used to calculate saturation magnetization of synthesized samples. The synthesized nanoparticles with enhanced magnetic characteristics are ideal candidate for their use in perpendicular magnetic recording and high frequency applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.