Abstract

Heterogeneous atomic magnetic chains are built by atom manipulation on a Cu$_2$N/Cu (100) substrate. Their magnetic properties are studied and rationalized by a combined scanning tunneling microscopy (STM) and density functional theory (DFT) work completed by model Hamiltonian studies. The chains are built using Fe and Mn atoms ontop of the Cu atoms along the N rows of the Cu$_2$N surface. Here, we present results for FeMn$_x$ ($x$=1...6) chains emphasizing the evolution of the geometrical, electronic, and magnetic properties with chain size. By fitting our results to a Heisenberg Hamiltonian we have studied the exchange-coupling matrix elements $J$ for different chains. For the shorter chains, $x \leq 2$, we have included spin-orbit effects in the DFT calculations, extracting the magnetic anisotropy energy. Our results are also fitted to a simple anisotropic spin Hamiltonian and we have extracted values for the longitudinal-anisotropy $D$ and transversal-anisotropy $E$ constants. These parameters together with the values for $J$ allow us to compute the magnetic excitation energies of the system and to compare them with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.