Abstract

Ni1−xFexO (x=0 and 0.03) nanoparticles are synthesized by a chemical route. XRD and TEM measurements confirm phase purity and crystallinity of the nanoparticles. Fe substitution in NiO reduces considerably the average particle size of the nanoparticles. The pristine NiO sample with size 14nm and Fe-substituted sample having size 7nm show room temperature ferromagnetism. The pristine NiO having 31nm size and Fe-substituted sample with size 25nm are found to be antiferromagnetic. The M–H and M–T behavior of the pristine and Fe-doped samples are explained with a core–shell model with an antiferromagnetic core and a ferromagnetic shell. The disordered spins at the shell give rise to a spin-glass like frozen state below 10K. The obtained room temperature ferromagnetism in the pristine and Fe-doped NiO has been attributed to particle size effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.