Abstract
Chromium selenide thin films were grown epitaxially on Al${_2}$O${_3}$(0001) and Si(111)-(7${\times}$7) substrates using molecular beam epitaxy (MBE). Sharp streaks in reflection high-energy electron diffraction and triangular structures in scanning tunneling microscopy indicate a flat smooth film growth along the c-axis, and is very similar to that from a hexagonal surface. X-ray diffraction pattern confirms the growth along the c-axis with c-axis lattice constant of 17.39 {\AA}. The grown film is semiconducting, having a small band gap of about 0.034 eV, as calculated from the temperature dependent resistivity. Antiferromagnetic nature of the film with a N\'eel temperature of about 40 K is estimated from the magnetic exchange bias measurements. A larger out-of-plane exchange bias, along with a smaller in-plane exchange bias is observed below 40 K. Exchange bias training effects are analyzed based on different models and are observed to be following a modified power-law decay behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.