Abstract

Mn-doped anatase TiO2 (Mn: 1.2, 2.4 at%) thin films were grown on Si(100) via atomic layer deposition (ALD). The synthesis utilized Ti(OCH(CH3)2)4 and H2O as ALD precursors and Mn(DPM)3 as a dopant source. X-ray photoelectron spectroscopy measurements indicate that Mn is successfully doped in the TiO2 matrix and reveal information about film composition and elemental chemical states. Microstructure, crystallinity, and density were investigated with scanning electron microscopy, X-ray diffraction, and X-ray reflectivity. All ALD-synthesized films exhibited room-temperature ferromagnetism; the microstructure, density, and magnetic field-dependent magnetization of the TiO2 varied with the concentration of Mn. ALD permits precise composition and thickness control, and much higher process throughput compared to alternative techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.