Abstract

CoNiFe alloy thin films deposited at various cobalt concentrations were galvanostatically electrodeposited on the pre-cleaned copper substrates. The effects of cobalt concentration on the structural, compositional, morphological, and magnetic properties of the films were investigated. X-ray diffraction patterns revealed that the deposited films possess polycrystalline in nature with mixed (fcc–bcc) cubic structure at optimized cobalt concentration. Microstructural properties of the films were calculated from predominant diffraction lines. The surface morphology and surface roughness were characterized using scanning electron microscopy and atomic force microscopy, respectively. EDAX results were revealed that the cobalt content increases as nickel content decreases whereas ferrous content initially increases and then eventually decreases in the CoNiFe alloy. VSM results show a higher value of saturation magnetization (4πMs) above 2 T with coercivity 154 A/m for films deposited in the optimized deposition condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call