Abstract
An exhaustive study of the structural and magnetic properties of Fe7−nPtn with n = 0, 1, 2, …7, bimetallic clusters is presented. Based on ab initio density functional theory that includes spin-orbit coupling (SOC) and graph theory, the ground state geometry, the local chemical order, and the orbital and spin magnetic moments are calculated. We show how the systems evolves from the 3-d Fe to the quasi-planar Pt clusters. These calculations show that SOC are necessary to describe correctly the composition dependence of the binding energy of these nanoalloys. We observe that the ground state geometries on the Fe rich side resemble the fcc structure adopted by bulk samples. Furthermore, we observe how the spin and orbital magnetic moments depend on the chemical concentration and chemical order. Based on these results, we estimated the magnetic anisotropy energy and found that the largest values correspond to some of the most symmetric structures, Fe5Pt2 and FePt6. To determine the degree of non-collinearity, we define an index that shows that in FePt6 the total magnetic moments, on each atom, are the less collinear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.