Abstract

The crystallization process and the magnetization of Cr diluted CoFeB were investigated in both ribbon samples and thin film samples with Cr content up to 30 at. %. A primary crystallization of bcc phase from an amorphous precursor in ribbon samples was observed when the annealing temperature rose between 421 °C and 456 °C, followed by boron segregation at temperatures between 518 °C and 573 °C. The two onset crystallization temperatures showed strong dependences on both Cr and B concentrations. The impact of Cr concentration on the magnetic properties including a reduced saturation magnetization and an enhanced coercive field was also observed. The magnetizations of both ribbon samples and thin film samples were well fitted using the generalized Slater-Pauling curve with modified moments for B (−0.94 μB) and Cr (−3.6 μB). Possible origins of the enhanced coercive field were also discussed. We also achieved a damping parameter in CoFeCrB thin films at the same level as Co40Fe40B20, much lower than the value reported for CoFeCrB films previously. The results suggest a possible advantage of CoFeCrB in reducing the critical switching current density in Spin Transfer Torque Random Access Memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.