Abstract

We report the structural and magnetic properties of a new system LiRhMnO$_{4}$ (LRMO) through x-ray diffraction, bulk magnetization, heat capacity and $^{7}$Li nuclear magnetic resonance (NMR) measurements. LRMO crystallizes in the cubic space group $\mathit{Fd}$$\bar{3}$$\mathit{m}$. From the DC susceptibility data, we obtained the Curie-Weiss temperature $\mathrm{\theta}_{\mathrm{CW}}$ = -26 K and Curie constant $\mathit{C}$ = 1.79 Kcm$^{3}$/mol suggesting antiferromagnetic correlations among the magnetic Mn$^{4+}$ ions with an effective spin $\mathit{S}$ = $\frac{3}{2}$. At $\mathit{H}$ = 50 Oe, the field cooled and zero-field cooled magnetizations bifurcate at a freezing temperature, $T_{f}$ = 4.45 K, which yields the frustration parameter $\mathit{f=\frac{\mid\theta_{CW}\mid}{T_{f}}}>$5. AC susceptibility, shows a cusp-like peak at around $T_{f}$, with the peak position shifting as a function of the driving frequency, confirming a spin-glass-like transition in LRMO. LRMO also shows typical spin-glass characteristics such as memory effect, aging effect and relaxation. In the heat capacity, there is no sharp anomaly down to 2 K indicative of long-range ordering. The field sweep $^{7}$Li NMR spectra show broadening with decreasing temperature without any spectral line shift. The $^{7}$Li NMR spin-lattice and spin-spin relaxation rates also show anomalies due to spin freezing near $T_{f}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.